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Outline

Overview of core concepts:

• Robot Motion

• Perception

• Localization and Mapping

• Navigation

Assumption: let’s talk about the simplest type of mobile robots, 

wheeled ground vehicles
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Perception: sensor types

• Proprioceptive

• Sensor measure values internal to the system as motor speed, wheel load, 
robot arm joint angles, battery voltage

• Exteroceptive

• Sensors acquire information from the robot’s environment as distance 
measurement, light intensity, sound amplitude = meaningful environmental 
features
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Perception: sensor types

• Passive sensors

• Measure ambient environmental energy entering the sensors, as 
microphones, temperature probes, cameras

• Active sensors

• Emit energy into the environment, then measure the environmental 
reaction. More control, more accuracy, but interference issues (and 
sometimes power)
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Perception: sensor types

What to measure? What is the robot task?

• Vision

• Obstacle distance

• Position

• Environmental monitoring (ASV)

• Olfaction (e.g. inspection of chemical plants)

• Temperature (e.g. inspection of a server farm)

The most important sensors are those involved

in the robots’ mobility
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Sensors performance characterization

• Dynamic Range

ratio between maximum and minimum input value – usually in dB

• Resolution

minimum difference between two values that can be detected 

• Linearity

how the sensor respond to changing inputs

• Bandwidth or Frequency

speed with which a sensor can provide a stream of readings 

number of measurements per seconds (in Hz) 

These specs of the sensors are usually measured in labs – controlled 

environments; 

however, often we need to identify how the sensor performs in its 

real-world deployment
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In Situ Sensors performance characterization

• Sensitivity:
measures how incremental change in the target input changes the output signal 

• Cross Sensitivity
sensitivity to environmental external parameters that are orthogonal to the 
target parameter; high cross-sensitivity is task-related and unwanted

• Error
difference between output and true value

• Accuracy
degree of conformity between sensor’s measurement and true value (usually %)

• Systematic Error
errors caused by factors that, theoretically, can be modeled; deterministic;
example: calibration errors, slopes, …

• Random Error
errors that cannot be predicted using a model nor can be mitigated; modeled as 
probabilistic process (stochastically)

• Precision
not to be confused with accuracy; reproducibility of the results: if the 
phenomena is the same, the measured value should be the same (this holds if I 
use several different sensors of the same type: I expect the same results from all 
of them)
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Challenges in Sensors modeling

• Blurring of systematic and random errors

active ranging sensors tend to have failures that are triggered by 

specific relative position of the sensor and of the environment 

(e.g., glass surfaces, mirrors, …)

During motion this happens at stochastic intervals

Moreover, robot usually have different and concurrent sensors

This, combined, is used to model error and to smooth their impact 

wrt the robot activity
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Challenges in Sensors modeling

• Multimodal error distribution

a common choice is to characterize the behavior of a sensor’s 

random error in terms of a probability distribution over various 

output values; diverging from the model can help to detect errors

(measuring the correct value is most probable)
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Wheel/Motor sensors

• Proprioceptive sensors used to measure the internal state and 

dynamics of the robot

• Optical encoders: measure the angular speed and position within a 

motor drive, or shaft of a wheel or steering mechanism

• Used for localization and to estimate the robot movements

• While the sensor itself could be accurate, the measure is inherently 

inaccurate (odometry) and needs integration (it measures the 

motor itself, what if a wheel slips? or if there is a slope?)
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Heading Sensors

• Compasses

• outdoor

• Ground-based-beacons

• GPS is a good choice for outdoor robots, but performs poorly indoor
• For Indoor robots, we can have similar solutions  indoor that usually requires 

other complex sensing capabilities (vision) or detection of NFC or RFID tags 
installed in the environment

• We require a resolution of a few centimeters

• Gyroscope

• Usually combined with accelerometers in an IMU 
Inertial Measurements Unit
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Active ranging

• Most popular sensors in mobile robotics

• Usually have  a low price point and easily interpreted outputs

• Among them, time-of-flight sensors are  those commonly used

• ! = # $ %
• d distance travelled
• c speed of wave propagation
• t		time of flight

1. Sonars

2. Laser Range Finder

56Sistemi Intelligenti Avanzati, 2021/22



Ultrasonic Sensors - Sonars

• Cheap

• Not particularly accurate 

• Simple and interpretable measurements

• Good for proximity – obstacle avoidance

• Low range
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Laser range finders - Lidars

Time of Flight (ToF) sensor which is used to scan
the surrounding of the robot. Parameters:

• Range = max perceivable distance (1-100m)

• Field of View  (FOV) =  degrees of a scan, from 

180° to 270°, 360°

• Angular resolution = how many points for 

each degree in a scan

• Frequency = how many scan per second

(1hz-50hz)

• 2D or 3D
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Laser range finders - Lidars 

Widely used in most indoor and outdoor robot 

applications as they:

• Are relatively cheap

• Easy to use and provide interpretable 

measures

• Robust wrt environmental changes 

(e.g. day, night, different seasons)

Laser range scanner are the most important 

sensor for most autonomous mobile robots
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Laser range finders - Lidars

Different tasks – different environment – different lidar types:

60

Indoor lidars have a range from 3-5m 

to 10-20m, with a FOV of 180-270°.

They are relatively cheap (250€ for 

unreliable entry level lidars, 1000-

5000€ for reliable models). 

Outdoor lidars have a  range from 10 

to 30-50m, with a FOV of 180-360°.

Price is higher (5-15k €) but still 

reasonable, performance are good. 
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Laser range finders - Lidars

In outdoor applications (autonomous vehicles), 3D lidars are a 

popular choice:

• Multi-layered lidar, not really 3D (from a single source)

• Usually 360° FOV

• Usually longer ranges (up to 200m)

• Expensive (10k-100k€)

• More data but also

more complex to interpret
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Vision

With the increasing success of Deep Learning, vision has becoming 
more and more important in robotics

Cameras provide a lot of data, are relatively cheap, but their output is 
also much more complex to interpret than the one of LIDARS.

• Limited range

• Distortion

• Reliability (day-night or light changes)

• Calibration
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Lidar VS Camera

Lidar

• Cheap

• Long range

• Up to 360° FOV

• Usually 2D

• Simple output

• Subject to reflections

• Measure the spatial surrounding 

of the robot

• Good to infer spatial occupancy, 

difficult to infer semantics
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Camera

• Cheap

• Close range

• Limited FOV

• 3D

• Complex output

• Subject to distortions, changing 

light conditions, …

• Measure the appearance of the 

surrounding of the robot

• Could be used to infer semantic 

knowledge
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RGBD Cameras

• camera + depth information using an active sensor

• easy to reconstruct 3D image of the environment

• good for a lot of sensing tasks (e.g., human detection, obstacle)

• widely used and useful, especially indoor

• limited range - depth (usable range < 3/5m)

• distortion 

• cheap (100€à1000€)

• do not replace vision 

(poor camera quality)
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Other sensors types

As robot can perform several different tasks, robots could be 
equipped with different type of sensors:

• Bumpers 

• Olfactometry 

• Chemicals

• Temperature sensors

• NFC readers

• RFID readers

• Radio – or other communication mechanisms…

• …

While you can expect to find one or more lidar/cameras on robot, 
other type of sensors are relative to the robot type/task.
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Sensors wrap-up

• Robot usually have several sensors that are used sometimes for 

acquiring data related to the same subproblem, sometimes for 

different subproblems

• Laser range finders and cameras are usually combined 

• More sensors = more data = more computational capacity required 

and more complexity (especially for vision)

• RGBD data are often a good compromise between data quality and 

complexity, but are rarely used as primary source of sensors

• There is a shift towards pure vision-based systems due also to the 

popularity of computer vision and deep learning, (however, this 

might be a trend)

• All robot data are defined by errors and uncertainty that have to be 

modeled (this is “easy” for lidars, but what about vision?)
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Perception and Feature Extraction

67

To reduce the impact of inaccurate sensor readings, an idea is to 

extract features from one (or more) sensor data:

• Low level features: geometric primitives (lines, edges, corners)

• High level features: semantic labeling 

(object detection, people detection, …)

This depends on the sensors type / data quality, the environment, 

and the computational power / frequency required to process data

From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2011
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Vision-related tasks

• Structure from stereo:
Reconstruct  the depth (the distance of objects/obstacles) from two or more 
cameras, images obtained at the same time
How: matching common features in both images (left, right)

• Structure from motion:
Reconstruct the depth and structure of objects from a flow of images obtained 
from one/multiple cameras in a sequence

• Visual odometry:
Estimate the motion of the robot/vehicle from visual input alone

• Colour tracking: 
Following an input with a predefined colour easy to identify (e.g., an orange ball, 
a line on the ground). Used in low-cost or simple platforms (e.g., teaching robots, 
RoboCup). Allows a reliable and fast recognition of landmarks with a low 
computational effort – works also with cheap sensors.
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Features extraction and computation: two issues

Features extraction is a way to extract a few meaningful information
from a dense and complex input

• We are able to identify features/pattern easily, robots don’t

E.g. an 8K video streams has a bandwidth of

300Mb/s

• How much of that info is needed by the robot?

E.g., lines are stable

• How much of that info can be processed in 

real time?

E.g. ResNet18 processes images of size 224x224
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Desired properties of features in robotics

• Features are recognizable structures of elements in the environment. 

• Extracted from measurements and mathematically described. 
(Model based – you select the features to search)

• Recent trends as deep learning allows a black-box extraction of features.
(The networks computes its own features)

• Good features are always perceivable and easily detectable from the 
environment (by us)

• Raw sensor data provide a large volume of data, but with low 
distinctiveness of each individual quantum of data. No loss of 
information. 

• Low-level to high-level features are abstractions of raw data, and as such 
they provide a lower volume of data while increasing the distinctiveness 
of each feature. 

• Ideally, the goal is to filter out «useless» data, keeping all good ones.
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More properties of features

• Localization accuracy: features should be easily identifiable and 

localizable wrt the world model

• Quantity of features: the «right amount»;

E.g., edge detection, 3D reconstruction.

• Invariance: not affected by changes of viewpoint, illumination, scale

• Computationally efficient

• Robustness: image noise, artifacts, blur, distortions should not 

affect the feature detection.
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High-level features: semantic knowledge

Semantic regards the task of giving a «meaning» to perception.

Usually done using vision (+ depth).

Deep learning improved (a lot) these abilities in the last years.

• Place recognition:

Identification of rooms/locations (corridor, kitchen, office, …)

• Object detection:

Identify an object in front of the robot

• Semantic segmentation:

Identify which region in an image is which object

• Loop closure:

Identify that the robot has already observed the same location 

(perhaps from a different point of view).
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Outline

Overview of core concepts involving robot mobility:

• Robot Motion

• Perception

• Localization and Mapping

• Navigation

Assumption: let’s talk about the simplest type of mobile robots, 

wheeled ground vehicles
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From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2011
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Localization and Mapping issues

Robot mobility requires addressing a key property: uncertainty
• Environment: the world is unpredictable

• Sensors: sensors have limits, are subject to physical laws, and are 

subjects to noise and errors

• Robots: actuation is unpredictable, an action can not have the 

desired effect

• Models: we can model certain components of the robot, and also

uncertainty; but models are inherently inaccurate, models are an 

abstraction

• Computation: robot acts as real-time system, but usually are not 

real-time system.

Real time computation is often approximated (quasi real-time).
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Other problems: 
Sensor Aliasing
• Aliasing is a problem that humans rarely encounter

• The human sensory system, particularly the visual 
system, tends to receive unique inputs in each unique 
local state 

As a consequence, to us, every place looks different. We 
experience aliasing in unfamiliar context: total dark, 
mazes, environments without landmarks.

• In robots, the non-uniqueness of sensor readings, or 
sensor aliasing, is the norm and not the exception 

• Formally, there is a many-to-one mapping from 
environmental states to the robot’s perceptual inputs. 
The robot cannot distinguish different states.

• Ex: obstacles perceived as humans, pigeons as rocks, …

Image from Stachniss et al
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Other problems: effector noise

• Similarly to robot sensors that are noisy, robot effectors are also 
noisy

• As a consequence, the effects of a robot actions are not entirely 
observable and uncertain

• If not handled properly, errors accumulates over time

Ex: wheeled robots effector noise:

• Limited resolution of odometry

• Misalignment of wheels

• Unequal wheel diameter

• Variation in the contact point of the wheels

• Tire pressure

• …
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Localization

Identifying the position of the robot in a known environment:

It needs:

• A model of the robot

• A map of the environment,

• Perception (sensor readings)

Localization is not a one-shot task: we need to maintain the robot 

localized and update its position while it is moving.

Localization is usually seen as an estimation problem, where we infer 

the robot position from available data modelling the robot.
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Localization vs Dead-reckoning

Odometry:

open loop estimation of the robot motion from sensor readings.

Dead-reckoning:

From an initial pose, open loop estimation of the robot position using 

odometry.

Localization:

Usually closed loop integration

of the robot position
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Localization

Identifying the position of the robot in a known environment

Localization is usually seen as an estimation problem, where we infer 

the robot position from available data modelling the robot
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Localization as estimation

Continuous estimate the robot position from data:

• Motion information:

• Proprioceptive sensors, odometry

• Environmental Measurements :

• Exteroceptive sensors as lidars, sonar, …

Usually solved as using probabilistic filtering
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Robot poses from time 0 to time t

Robot exteroceptive measurements from 
time 1 to time t

Motion commands (or proprioceptive 
measurements) from time 0 to time t

Robot pose
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Motion model

The robot motion model  is the probability distribution of the robot 

pose at time t+1 given the robot pose and the expected robot 

movement, measured using motion or proprioceptive sensors:

, "",$%& "",$, -$

Assuming that the robot is at "",$ and the control -$ is applied, we 

estimate the expected robot position
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Motion model

Using only proprioceptive measurements, pose estimation error 

increases

82

From Thrun Burgard Fox, Probabilistic Robotics, MIT Press 2006
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Measurement model
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It describes the probability of a robot measurement .$
, .$ "",$

given a robot pose "",$ considering possible noise regarding sensors.

This is used to update the robot belief at time t

/01$ "" = , "",$ = "" .&:$, -(:$)&

The robot belief is a probability distribution over the space of all 

possible locations of the current robot pose 
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Localization example

84

From Thrun Burgard Fox, Probabilistic Robotics, MIT Press 2006
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Robot localization algorithms

The localization model assumes so to predict the current position 

from movement, to observe if the measurements are coherent with 

the estimated position, and to close the loop by updating the robot 

belief.

This is done usually by exploiting probabilistic filters:

Gaussian Filters: Extended Kalman Filter (EKF), 
Unscented Kalman Filter (UKF),
Extended Information Filter (EIF)

Non Parametric Filters: Histogram Filter (HF), 
Particle Filter (PF)
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Belief representation 

We can represent the belief as a single hypothesis of by have a 

distribution probability 

over multiple hypotesis
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From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004

Sistemi Intelligenti Avanzati, 2021/22



Map representation

According to the algorithm used for localization, the type of belief 

distribution, we can have multiple type of map representations
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From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004
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Map representation

Usually a robot has different maps, at different level of abstraction; 

one of them is the one used for localization.

• Continuous vs discrete representation

• Occupancy vs topological maps

• Closed world assumption: only what there is in the map exists

• Static vs dynamic

• 2D or 3D 

A map, overall, is an approximation of the environment.
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Exact Cell Decomposition

This method use critical points to 

tesselate environment, obtaining 

a discrete topological map from a 

continuous one.

Assumption: the particular 

position of the robot in one of the 

area belonging to one node of the 

map does not matter, that matter 

is the ability of the robot to move 

from area to area.
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From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004
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Fixed decomposition maps
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Discretization of the map into 

cells of the same size, 

representing occupancy.

Narrow passages disappear, but 

each cell has the same 

representation.

We obtain a grid map.

We can also assign different type 

of values to each cell (instead of 

1-0, e.g. occupancy probability)

From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004

Sistemi Intelligenti Avanzati, 2021/22



Grid maps

Grid map are a popular approach 

widely adopted.

As free space is not interesting, 

we can use cells of different size 

to optimize the grid map 

representation.
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From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004
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Hybrid maps

We can have different layered maps, as topological and grid maps, 

combined, to allow the robot to do different tasks.
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SLAM

In all the previous examples, we have considered the map as known.

However, what if the robot is placed in an unknown environment?

How the map is done in the first place?

The robot needs at the same time to:

1. Map incrementally the environment integrating new observations

2. Localize itself its in the map

This is called Simultaneous Localization and Mapping (SLAM), a joint 

estimate of both the environment map and the robot pose.
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SLAM 101

94
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How to build a map?

Incrementally, by fusing together sensor readings while

correcting sensor error.

When the robot has observed (through sensors) the entire 

environment, the mapping process is over)



SLAM 101

During SLAM the 
robot integrates 
sensorial input by 
correcting 
odometry and 
sensing error to 
provide an 
estimate of the 
environment.

At the same time
it estimates its 
pose in it.
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From Siegwart,Introduction to Autonomous Mobile Robots, 
MIT Press 2004

Sistemi Intelligenti Avanzati, 2021/22



SLAM Example
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From Siegwart,Introduction
to Autonomous Mobile 
Robots, MIT Press 2011
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Loop closure detection: the
robot observes
the same feature twice, 
reducing pose uncertainty



SLAM
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SLAM belief state
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• Some SLAM methods represent the probability distribution of the 

robot location as a parametric form (e.g., a Gaussian)

• Other method (particle filter SLAM) represent it as a set of 

randomly drawn (and resampled) sampes.

• In this case, the density of the particles is higher towards the center

and decreases with distance.

• When a new observation arrives, low-probability samples are 

discarted and new are randomly sampled.



Open Challenges in Mapping

• The world is dynamic, humans are moving around, the robot is 

moving, objects can be moved around.

• Maps are represented as static environments. Dynamic objects are 

not represented (e.g., people moving) and obstacles are 

represented in a fixed position (e.g., chairs)

• Large-scale and open spaces are difficult to represent

• How to «segment» a parking lot into different areas in an objective way?

• Closed-world assumption
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Alternatives: Landmark-based navigation

An alternative is to put a set of easily recognizable landmarks in the 

environment:

• The robot moves in open loop by doing dead-reckoning from 

landmark A to landmark B

• When the robot detects landmark B, it localize itself there

Advantages: it’s a simple yet effective method, robust to changes

Disadvantages: landmark should be put in advance in the 

environment (that should be modified), the distance between two 

landmark should be little to reduce the chance of failure during 

movement while doing dead-reckoning 

Landmarks: beacons, QR codes or visual markers, 

usually in placed without obstruction (ceiling)
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Outline

Overview of core concepts:

• Robot Motion

• Perception

• Localization and Mapping

• Navigation

Assumption: let’s talk about the simplest type of mobile robots, 

wheeled ground vehicles

101

From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004
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Navigation

102

After we have a map, and the robot position, how to go from A to B?

• Path Planning

”how to go from A to B”

• Obstacle Avoidance

“how to avoid obstacles

while going to A and b”

• Navigation Architecture

How to integrate everything together
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Path Planning approaches

Once we have the map, we have to compute a set of states for finding 

the path that the robot can execute. 

However, as we’ve seen, we have to provide a proper formulation for 

this problem:

• Road map: identify a set of routes within the free space

• Potential field: impose a mathematical function over the space

• Cell decomposition: discriminate between free and occupied cells
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Road map path planning

Idea: develop a network of roads / paths along the environment using 
a decomposition of the robot traversable free space.

Method used for computing paths: 
Voronoi decomposition, direct visibility, …

104

Visibility Graph Voronoi Decomposition

From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004
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Potential field path planning

Idea: put an attractive artificial potential field on the goal, a repulsive 

one on obstacles, let the robot follow these simulated forces
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from https://www.cs.mcgill.ca/~hsafad/robotics/
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Cell decomposition path planning

106

From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004
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Approximate cell decomposition

This is what is usually done: path planning on a grid map
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Here: A* for solving the search problem, Manhattan distance as h()
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Path Planning Algorithms

• Path planning is usually modeled as a tree-search problem

(examples here: https://qiao.github.io/PathFinding.js/visual/)

Examples of algorithms used :

• A* (more on this later in the course)

• RRT (Rapidly Exploring Random Trees) (image from LaValle)
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Obstacle avoidance

What happens if the robot is 

bigger than 1 cell (e.g., a 2x2 

cell)? Shall we allow 

trajectories that are that close 

to the obstacles?

109

Several techniques are used for 
performing obstacle avoidance. 
Examples: inflating either the 
obstacle (considering the robot as 
a point) or the robot (allowing the 
robot to plan trajectories that 
goes across the obstacle.
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Obstacle avoidance

Usually a two-later architecture is 

used: 

• Global path planning computes the 

trajectory towards the goal

• Local path planning executes locally 

the trajectory avoiding obstacles

110

Local path planning uses:

• Potentials fields

• Dynamic windows

approaches
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Navigation Architecture

Navigation is a task that requires both hi-level planning and low-level 

control, reacting to changes in the environment.

We can organize modules of the robot according to different 

hierarchies, as performing a temporal decomposition:
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From Siegwart,Introduction to Autonomous Mobile Robots, MIT Press 2004
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